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ABSTRACT

In a recent paper Bickel and Doksum claimed that procedures proposed by

Box and Cox for estimating a transformation can be costly and unstable. W-V

considers how the supposed cost and instability arise and illustrate ouf points

by further analysis of textile data from the original paper. The analysis is
4%

used to make the further point that the cost of making a transformation,

when such is appropriate, can be extremely high. Some common sense advice on

transformation analysis is given.
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SIGNIFICANCE AND EXPLANATION

Much statistical analysis is concerned with empirical models such as

those commonly used in the analysis of variance and in regression analysis.

Such models often suppose that the dependence of the response y upon the

experimental conditions may be represented by some kind of simple model, with

errors (independently) distributed with constant variance in normal

distributions. It is sometimes true that such models can be rendered much

more representationally adequate by making some transformation of the response

y such as log y, y1 or y-1. All the transformations just listed may be

regarded as special cases of a power transformation class conveniently written

as y(A) = (yA - )/A. More generally we can define y as referring to

any class of transformations depending on parameters A. Box and Cox (1964)

proposed a method for estimating the parameters A for such a class of

traniformations at the same time that the model was fitted. The method has

been widely used with considerable success.

In the above we use the term empirical model to mean one whose form does

not rest on physical or mechanistic justification. It is not uncommon to

tacitly imbue empirical models with more authority than they can sustain. For

example, when variables are quantitative, empirical models such as

polynomials, are most aptly regarded as useful mathematical "french curves"

which can be adapted to graduate a variety of smooth functions by suitable

adjustment of parameters among which, with co-equal status, are the

transformation parameters .

Recently a theoretical paper by Bickel and Doksum (1981) concluded that

these Box-Cox procedures could be "costly" and "highly unstable". We believe

these conclusions are misleading. The present paper attempts to set out some

of the issues and to supply some common sense advice on the use of these

5'' techniques.

(: 000
'5i --

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report. r

A 
.4

' N -



SOME CONSIDERATIONS IN ESTIMATING DATA TRANSFORMATIONS

*
George E. P. Box and Conrad A. Fung

SUMMARY

In a recent paper Bickel and Doksum (1981) concluded that a procedure

suggested by Box and Cox (1964) for estimating a transformation can be costly

and highly unstable. In a brief reply by Box and Cox (1982) argued that these

conclusions result (a) from an inadmissible comparison of parameters in

transformed models, (b) from neglect of the Jacobian of the transformation,

and (c) from application of the procedure to problems where almost no

C" information exists about the transformation parameter.

The present authors believe that, when appropriately used, the estimation

of transformations is an extremely potent tool. We fear that the statement of

conclusions by Bickel and Doksum may result in unfortunate misunderstandings.

The purpose of this paper, therefore, iu to attempt to clarify the issues more

fully and further to make the point that to fail to transform appropriately

can be costly.

I. SOME ISSUES

An elementary example

To concentrate ideas, imagine an empirical study of the relationship

between y, the time in hours to death of an animal treated with a lethal

Current address: E. I. DuPont de Nemours and Co., Inc., Wilmington, DE

19898.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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drug, and x, the dose of the drug in cc's.- Suppose it is hoped to relate

y to x by a simple empirical model of the form

4*~~ +A (A )(A)x X+E1

where y M is a power transformation* conveniently written as

~((Y = ~ A - 1)/AX (A $ 0)(2

y ux log y (XA=0)(2

and where for some suitable choice of A the errors e are independently and

2
approximately normally distributed with fixed variance 0 . The bracketed

superscripts X on a and on 8 are here introduced to indicate that these

coefficients are measured in a scale which depends on that of Y (A) In

practice it seems that useful power transformations mostly occur within the

range (- A 1)

*1Units of eA

Suppose A=1. Then 0 measures the rate at which time to death

* increases with dosage and the units of measurement are hours per cc of drug.

By contrast, for A=-,measures how the rate of dying decreases with

dosage and the units of measurement are hours- per cc of drug. Obviously

W )and e _)are incommensurable and hence not directly comparable.

More generally it is essential to remember that when such transformations are

applied, the units of measurement of the parameters and their meaning (as well

as their numerical values) can alter dramatically as the transformation is

changed.

We use the power transformation for illustration. However, the procedures
suggested by Box and Cox are in principle applicable to any class of non-
linear parameter transformations including multidimensional X and for these,
similar arguments would be likely to apply.

-2-
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The near-linearity of power transformations over short ranges

As is well known, when the proportional change in y over the range of

the data, as measured, for example, by Ymax/ymin' is sufficiently small,

power transformations will be nearly linear. For example, for data covering

the range y - 995 to y - 1005, even for a power transformation as extreme

as the reciprocal, a linear approximation of the form
y(A) ( 0 + Wly (3)

where w0 and wI are suitably chosen coefficients has a maximum error of

less than 0.003%.

Now, much statistical analysis is invariant under linear recoding. In

fact such recoding is often recommended routinely to increase clarity and for

computational convenience; for such examples therefore, over a wide range of
*q

values of A, the particular power transformation chosen (since it is

essentially linear), may be a matter of indifference. Equivalently it will

not matter whether any transformation is made at all. Now, the ability to

estimate A from data arises from the nonlinearity which the transformation

induces. Thus, there may be very little information in the data about the

parameter A when ymax/ymin is small. Consequently, as is pointed out in

elementary texts (for example, in Box, et al., (1978)), attempts to estimate

A in such situations may be fruitless. Of course information about A

depends on other factors besides ymax/ymin; in particular, on the

coefficient of varia-tion of the data, on the design, and on the size of the

sample. We intend to discuss these matters in a later paper. For the present

we refer to data which allows only very imprecise estimation of A as non-

S. informative for A.

-3-
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2. CRITICISMS

Bickel and Doksum ignore the fact that e(A), s are incommensurate for

4' different values of A. Let us temporarily do the same. Unless the data

happen to be located and scaled so that they cluster about unity, because of

Ithe change in the units of measurement of 0 (A) as X is changed, the

*magnitude of 0 (A) is typically highly dependent upon X. Furthermore, this

dependence can be increased without limit simply by changing the units in

which y is measured, for example from hours to seconds. Thus, inevitably the

distribution of the estimators Aand 8 will also be highly dependent.

The "Cost" of estimating A

The dependence induced by incommensurate scaling can therefore produce a

marginal variance for e(A that is greatly inflated in comparison with the

conditional (A-known) variance. It is this effect that accounts for most of

what Bickel and Doksum call the cost of estimating A.

The "instability" of Box-Cox procedures

For data which are non-informative for A the marginal variance of A

will be very large ensuring that different samples of data generated by the

same model can give very different estimates of A which because of the high

4dependence between A and p() will in turn produce very different

estimates of eCA) (in incommensurate units).

It is this effect which Bickel and Dokaum, refer to as the instability of

Box-Cox procedures

Of course as has been pointed out by Carroll and Ruppert (1980) "instability"
is not transmitted into the estimates of the response. This parallels the
effect found in linear regression where high correlation between parameter
estimates and hence instability of the estimates induced by near-collinearity

* of the regressors is not transmitted into the estimates of the response for
the region where the data are available.

-4-



The effect of not ignoring the Jacobian of the transformation

To the extent that the transformation y(A) can be approximated by a

linear function of y, the Jacobian of the transformation from y to y

explains the change in scale. While Bickel and Doksum considered only the

Y (A) form of the transformation of equation (2) Box and Cox took account of

this linear scale change by employing, when the scale was important, the

.4 alternative form

O X ( y ( X 0 )( 4

log y (X, 0 )Z e

where y is the geometric mean of the data. It will be observed that z

is scaled in units of y whatever the value of A. The factor ;('-1) from

the Jacobian thus standardizes the scale of the transformed data z so

that the coefficients e(A) for analyses conducted in terms of z )  are

more nearly comparable as X varies. Conversely this factor measures the

linear dependence between X and e induced by the arbitrary choice of theS,

.scale of y. Thus, suppose, for an example in which y was measured in tons,

it happened that there was little change in the magnitude of XA as A

varied over a range from -1 to 1. Then for y measured in pounds, over

the same range of A, A would vary over a range of 2,0002 . 4,000,000. It

is true that this z.O) form cures only the gross linear dependence between

A and ;(,X) and that residual non-linear dependence remains, but the (A

effects complained of mostly occur when Ymax/Ymin is small so that ylM is

almost linear in y. (See also Hinkley and Runger 1983.)

3. FURTHER EXAMINATION OF THE TEXTILE DATA

To illustrate these points we re-examine an example used by Box and Cox

(1964). They describe how the data had been obtained by two textile

A...

,4 ', ,' , ,, , ,. 1.,' . , , ., , , , . . ., . . .. . .. ... .. . . . . . . _ . . . . .
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scientists who had used a 33 factorial design in the study of a testing

machine. The three input variables were x, = length of specimen, x2 =

amplitude, and x3 = load. To this data the scientists had fitted a full 10-

coefficient second degree equation

y = 0 + E eix + EZ ijxix j + (5)
i i)j

which gave complicated and messy conclusions. Box and Cox argued that general

physical considerations suggested a log transformation in terms of which the

model might simplify, and showed that for this data (for which ymax/ymin was

over 40), A could be accurately estimated and indeed lay very close to 0.

.4 With the log transformation Y = log y, an excellent fit was obtained from a

response equation of only first degree. Thus with the log metric all second

* order terms 6ij in (5) could be omitted, and the response equation contained

only 4 coefficients (86,0, 2 ,83). We here extend somewhat the Box-Cox

Bayesian analysis noting that the conclusions readily translate to a sampling

theory context.

For illustration Figure I shows contours for the joint marginal posterior

distributions of A and one of the regression parameters 01. In Figure 1(a)

, the analysis is conducted in terms of y and in Figure 1(b) in terms of

(Mz • Note in particular the great reduction in dependence resulting from

the use of z(A) rather than the y form.

Figures 2(a) and 2(b) enable us to study the nature of the model

simplification arising from the log transformation for analyses conducted in

(A) (M)
terms of y and z , respectively. They show the dependence on X of

%S

In which, a priori, p(2,log OlA) & k(A1) and p(X) is locally uniform.

'a -6-
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the conditional estimates (conditional Bayesian means) for the

coefficients in a full second degree equation model. From either diagram it

will be seen that with no transformation, X 1, (and more generally with

values of X not close to zero) nearly all the coefficients 0 tend to be

distinct from zero, making necessary a second degree approximation. By

contrast, as we approach the log transformation, X 0, all second order

terms become small, making relevant the much simpler first degree 4-parameter

model.

Comparison of Figures 2(a) and 2(b) illustrates how the linear part of

* the dependence between A and the estimated first order coefficients 8(A)

is eliminated by employing z (1) instead of y OX) (i.e. by taking account of

the Jacobian). By contrast, notice how the strong dependence between A and

the second order coefficients ijA arising from inadequacy of the linear

model when A departs from zero is still evident in the z M plot. In

fact, as was otherwise demonstrated by Box and Cox, this dependence is clearly

a major contributor to the remarkably precise estimation of X possible in

this particular example.

It is important to realize that, except for ti's purpose of illustrating

our point, it makes little sense to study plots like Figures 1(a) and 2(a) for

which the units of the vertical scale are meaningless. The dependence shown

in these two diagrams is indeed rather moderate because in the units (10

hours) arbitrarily adopted in tabling this data the mean happens to be not

very far from unity. Analysis in terms of hours, minutes or seconds would

produce much more dramatic dependence.

-9-
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4. THE COST OF NOT TRANSFORMING THE TEXTILE DATA

The original analysis of the textile data conducted by the textile

* ~*'.scientists with no transformation (as if it were known that A = 1) led to a

model which was unnecessarily complicated. In addition it is possible to show

that it also led to a great loss in efficiency. Comparison of the F-ratiosa..-.

calculated by Box and Cox for the original quadratic analysis and the linear

analysis in the log scale, shows that the F-ratio for the latter is 7.6 times

as large as that for the former. It is not entirely clear, however, what

conclusion we should draw from this comparison, since the assumptions which

justify the F distribution would be seriously invalid for untransformed

data.

A more relevant assessment can be made as follows. From the careful

*:,- earlier analysis of these data, it seemed that to a reasonable approximation,

the linear model in Y = log y satisfied the standard assumptions, and we

will assume this to be so. We further suppose that the object is to

estimate y, and we will measure how well this is done by calculating the

variances of the estimated responses taken over the 27 points at which the

data were collected. Thus we are regarding the design points as sampling the

space over the region where we might legitimately use the fitted equation.

In what follows, the standard normal theory assumptions which would

justify the first-order model in the logged data are referred to as

assumptions A1 , while the corresponding assumptions which would justify a

second order model in the unlogged data are referred to as assumptions A2.

In an obvious matrix notation, we can write the first order model in

Y = Iny fitted by least squares on the assumptions A,, as

.,(1) X12(I) = RY with s2  0.0345

'- ±4where

C-
* .4' 10-

.- " .. . . . . • o. . . . . . . . . o •..- . ........

. . . . 5* °. . ° o - . - o . .. *.o° .'. -0o .. • o.5 . , * *.. C.• - . = • . " .

=- * i * *S " ....--.-
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Correspondingly the madratic model in y fitted on assumptions A2  can be

written

12 1 X 12 =2 with s2 . .07392,
X '-2i-(2) '2Xy

where

R 4zX (XX) X'-2 -2 -2-2-2

In the above a2 and s2 represent the residual mean squares based

Y y

respectively on 27 - 4 - 23 and 27 - 10 - 17 degrees of freedom.

Table (1) shows the results of the following calculations:
A

The "perceived" variances for the Y(2) 's shown in the first column of

the table are estimated on the (false) assumptions A2  that the second order

model in the untransformed response y is appropriate. They are the diagonal

elements of the matrix R2B .
-2A

The "actual" variances for the y(2)'s given in the second column of the

table were obtained using the following approximation. Let E be the n x n~-y

covariance matrix of the y's. Then the variances of the ;(2) 1 are the

diagonal elements of the matrix R2E2 On the assumptions A,, which we

believe to be approximately correct, E is a 27 x 27 diagonal matrix whose

ith diagonal element is approximated by (y(1) } 2 Y where y(I)i - exp(Y(l)i)

is the estimated response obtained by taking the antilog of Y Mi which is

fitted with the model we believe to be true.

The "attainable" variances shown in the third column are calculated as

follows:

The variance var(Y (i) of an estimated response Y(1)i is the i "th

diagonal element of the matrix Rs• The variance of Y(I) - exp(Y(l) is

%.%
t"" w -11-
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then given approximately by
}2

V(Y(1 ).) var(Y(1 )Y( 1 ).}I

The losses of efficiency may be judged from the column in the table

var Yi(2}
showing the ratios • It will be seen that all are greater than 1,

var y W)

and that there are many very large values with one value as high as 308. We

are thus in this example faced with a very serious loss of information that

*",. would result from using an inappropriate transformation, namely the original
V-.

data.

In considering the results of Table 1, two influences should be borne in

mind: (a) the parsimony effect, and (b) the effect of inappropriate

weighting.

Concerning parsimony, the first order model contains four parameters; the

second order model contains ten. It is well known that for any linear model

.9" containing p separately estimable parameters with n observations,

irrespective of the design, the average variance of the estimated responses is

R 02 . Thus, associated with the use of the more parsimonious model, we
n

should expect an average reduction in the variances of the fitted responses by

a factor of -= 2.5.

Concerning inappropriate weighting, on the assumptions A, for the first

order model in Y = log y, the variances for the yi will be heterogeneous,

implying that weighted rather than unweighted least squares would be

appropriate. It is well known that moderate heterogeneity of variances do not
-..

greatly affect estimates and their estimated standard errors, but in the case

considered, this heterogeneity is extreme. For example, consider the ratio

-12-
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I 2
var (y)

var(yj) A

In the most extreme case this is equal to

var(y 19 ) , 3607 2 1681

var(y9 ) 88

Thus given the appropriateness of the log metric, the variances for the y's

differ by huge amounts and ordinary unweighted least squares will be very

inefficient.

-.1

4o

~-13-
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Quadratic model in y Linear model
in Y - log y

Perceived Actual Attainable

- - - 37.6 13.0 3.3 4.0
- - 0 25.3 6.4 1.1 5.9

0 - - + 37.6 6.1 0.7 9.0

- 0 - 25.3 5.8 0.7 8.6
- 0 0 19.2 6.4 0.2 33.7
- 0 + 25.3 4.8 0.1 34.5

- + - 37.6 6.3 0.3 24.0
- + 0 25.3 5.2 0.1 58.2
- + + 37.6 15.4 0.05 308.0

0 - - 25.3 37.7 12.6 3.0
0 - 0 19.2 11.9 3.6 3.3
0 - + 25.3 11.2 2.6 4.3

0 0 - 19.2 9.6 2.2 4.3
0 0 0 19.2 7.6 0.4 19.0
0 0 + 19.2 6.7 0.5 14.6

0 + - 25.3 6.9 1.0 6.9
0 + 0 19.2 6.4 0.3 22.1
0 + + 25.3 4.8 0.2 22.8

+ - - 37.6 139.7 91.3 1.5
+ - 0 25.3 56.0 30.3 1.9
+ - + 37.6 40.5 19.0 2.1

+ 0 - 25.3 43.8 18.8 2.3
+ 0 0 19.2 14.0 5.4 2.6
+ 0 + 25.3 12.7 3.9 3.3

+ + - 37.6 20.7 7.3 2.8

+ + 0 25.3 8.8 2.4 3.6
+ + + 37.6 7.6 1.5 5.0

Table 1. Comparison of variances of estimated responses

for 33 textile example.

(variances shown are 10 x the actual variances)

-14-
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5. DISCUSSION

Experience with the procedures proposed by Box and Cox confirms our

belief that, when employed with data that potentially contain some useful

information about transformation, these methods are not troublesome and can be

extremely valuable. Theoretical support comes from the original work of Box

and Cox and more recently from that of Hinkley and Runger (1983).

The alarming results of Bickel and Doksum concerning the supposed cost

and instability of these methods follow largely from their failure to take

account of arbitrary scaling (Box and Cox 1982). The high cost of not

transforming data for which transformation is needed is illustrated by an

example.

.4

NI

i
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